Angled onion, *Allium triquetrum* L., a beautiful flower with a bitter taste

V. Lesieur\(^1,2\), M. Jourdan\(^2\), T. Thomann\(^2\), A. Sheppard\(^2,3\), J.F. Martin\(^1\), M.S. Tixier\(^1\), L. Morin\(^3\), S. Raghu\(^4\) and B. Gooden\(^3\)

\(^1\) CBGP, Montpellier SupAgro, INRA, CIRAD, IRD, Univ. Montpellier, Montpellier, France
\(^2\) CSIRO Health and Biosecurity, European Laboratory, Montferrier sur Lez, France
\(^3\) CSIRO Health and Biosecurity, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
\(^4\) CSIRO Health and Biosecurity, Brisbane, Australia

Summary

It is now well recognised that many invasive plants have escaped from gardens and landscapes where they were originally planted for ornamental purposes. Angled onion, *Allium triquetrum* L. (Amaryllidaceae), is another example of such an escapee. This bulb-forming herbaceous perennial plant, native to the west and central Mediterranean, is now widespread and invasive in different parts of the world. In Australia, the weed is declared noxious in southern parts of the country and its uncontrolled spread threatens biodiversity in natural environments. In addition, *A. triquetrum* is also problematic in agriculture, causing milk and meat taint with strong onion odour. Because of the lack of effective control methods, a classical biological control approach has been initiated by CSIRO and Montpellier SupAgro (France). The first phase of the program includes native range surveys for characterising the natural enemies community (arthropods and fungi) associated with the target plant, which seems to be poorly understood across its native range. Here, we summarise the relevant information from a biological control perspective based on literature review and present the results of the first field surveys carried out in the native range.

Keywords

Weed, Amaryllidaceae, natural enemies’ community, arthropods, fungi.