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Summary   Using the Australian Weed Risk Assess-
ment (WRA) model as an example, we demonstrate 
how screening scores arising from risk assessment 
models may be translated into probabilities. The ap-
proach estimates uncertainty arising from both the 
risk assessment model itself, and uncertainty in the 
likely base-rate probability for the characteristic being 
screened. The results confi rm the high sensitivity of the 
posterior probability of weediness to the prior base-rate 
of weediness of plants subjected to screening. Results 
provide a quantitative estimate of the weediness prob-
ability posed by taxa classifi ed using the WRA model, 
enabling bio-economic modelling to contribute to the 
decision process, should this avenue be pursued. 
Keywords    Risk assessment,  bootstrapping,  Bayesian, 
 WRA,  modelling uncertainty.

INTRODUCTION
Successfully predicting invasiveness is a diffi cult task, 
as it is widely accepted that the likelihood of an intro-
duced organism making the transition to being invasive 
is low (e.g. Mack et al. 2000). For events that have a 
low prior probability of occurring (sometimes referred 
to as having a low ‘base-rate probability’), predicted 
probabilities of occurrence based on the results of 
screening tests alone tend to substantially overestimate 
the true probability of the event occurring. The true 
probability of the event occurring in light of a screen-
ing test is obtained by ‘revising’ the prior probability 
using the screening test likelihood—for this reason it 
is often referred to as the posterior probability. The 
proportion of predicted events that would be expected 
to actually occur based on this posterior probability is 
referred to as the ‘Positive Predictive Value’ (PPV) of a 
test. For example, in the case of mammogram screen-
ing for breast cancer, the PPV could be in the order of 
0.1 (Gigerenzer 2002). That is, an estimated 90% of 
women with positive mammograms do not have breast 
cancer—these cases are referred to as false positives. 
This high rate of false positives may at fi rst glance in-
vite criticism of the screening test; however a low PPV 
is not necessarily a result of a screening system being 
sub-standard, but more often a phenomenon of trying 

to predict uncommon events with imperfect discrimi-
natory tests. This problem, sometimes referred to as the 
‘base-rate effect’, also occurs within disciplines such 
as engineering e.g. earthquake forecasting (Matthews 
1997), though has only more recently been addressed 
in issues of natural resource management e.g. weed 
risk assessment (Smith et al. 1999), or ecology e.g. 
predicting species occurrence (Manel et al. 2001). 
The exact value of the PPV depends heavily on the 
prior probability of the event in question, along with 
the sensitivity and specifi city of the screening test, 
particularly the latter, and can be calculated by direct 
application of Bayes’ Theorem.

One management approach for dealing with the 
imperfect nature of diagnostic tests and the resulting 
inaccuracies in prediction is the use of decision theory 
(Matthews 1997), and it has been suggested that weed 
risk assessment could be placed in this context (Smith 
et al. 1999). For such an approach, quantitative esti-
mates of the probability of weediness are needed, along 
with estimates of the costs e.g. importing a weedy plant 
or preventing importation of a useful plant, and ben-
efi ts e.g. preventing the importation of a weedy plant or 
introducing a useful plant, of different actions. Classi-
fi cation-based screening models such as the Australian 
Weed Risk Assessment (WRA) system (Pheloung et 
al. 1999) do not readily provide estimated probabili-
ties of weediness. However, summary scores may be 
converted to predicted probabilities of weediness by 
using, for example, logistic regression (Hughes and 
Madden 2003). Unfortunately, if the base-rate effect 
is ignored, the resulting fi tted probabilities of weedi-
ness in relation to WRA score are biased upwards, as 
the training dataset contained an unrealistically high 
proportion of weeds.

A decision theory approach requires not only the 
estimated probability of a taxon becoming invasive, 
but also the uncertainty around that probability. Uncer-
tainty in predicted probabilities may come from several 
main sources. The fi rst is model selection uncertainty, 
whereby differing models differ in their predictions, 
and there is uncertainty as to the correct model. The 
second source is the inherent variability in model 
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predictions, which may be estimated from the statisti-
cal properties of the model being used, or by computer 
intensive methods such as bootstrapping (Efron and 
Tibshirani 1993), or a mix of both. Lastly, there may 
be uncertainty surrounding ‘fi xed’ parameters within 
the model. For example, while it is clear that the per-
formance of a screening test is highly sensitive to the 
prior probability of the event being predicted, in the 
case of biological invasions, this quantity is poorly 
characterised. In fact, the widely held assumption that 
only a very small proportion of introduced taxa will 
become invasive is not universally true e.g. pasture 
species (Lonsdale 1994), and the emerging high rate 
of naturalisation (a necessary precursor to a taxon 
becoming invasive) of non-indigenous plants (Dun-
can and Williams 2002) may indicate that in time this 
paradigm may change. 

In this paper, using the WRA system as an ex-
ample, we demonstrate how screening scores arising 
from a predictive model of weediness may be re-
expressed as posterior probability estimates of weedi-
ness, including uncertainty around these estimates 
that refl ect uncertainty in the prior probability of 
weediness. We achieve this by extending the logistic 
regression approach of Hughes and Madden (2003), 
utilising standard bootstrapping procedures to account 
for the base-rate effect, and using a Bayesian approach 
to incorporate prior uncertainty in the base-rate prob-
ability of weediness. In doing so, we demonstrate how 
a screening system used to predictively classify taxa 
into various weediness categories may be modifi ed to 
explicitly estimate risk in a probabilistic manner.

MATERIALS AND METHODS
The Weed Risk Assessment (WRA) model   The 
Weed Risk Assessment (WRA) model has been op-
erational in Australia since 1996 as the second compo-
nent of a three-tiered system aimed at identifying and 
preventing the entry to Australia of environmental and 
agricultural weeds. Briefl y, the WRA model converts 
responses to questions relating to the plant’s climatic 
preferences, biological attributes, reproductive and dis-
persal method into a score, whose value determines 
whether to ‘accept’ (WRA Score ≤0), ‘further evalu-
ate’ (1 ≤ WRA Score ≤ 5), or ‘reject’ (WRA Score 
≥6) the taxon.

Specifying the prior probability of weediness   In a 
review of the available literature, Smith et al. (1999) 
considered the prior probability (or base-rate) of 
weediness of plants to range from 0.01% (William-
son and Fitter 1996) to 17% (Lonsdale 1994) with a 
likely value of 2%. Hence, as a prior distribution for 
modelling this uncertainty, we used a Beta distribution 

with parameters α = 1.62 and β = 31.4, that correspond 
to a mode of 0.02, a mean of 0.05 and a 99% quantile 
of 0.17. The Beta distribution is the standard distribu-
tion used for modelling prior uncertainty in proportion 
data. In the current context it refers to the probability of 
a plant being presented for importation being a weed, 
independent of its subsequent WRA score.

Estimating posterior probability of weediness   The 
original 370 taxa data set analysed by Pheloung et 
al. (1999) contains 286 species classifi ed as weeds, 
and 84 species classifi ed as non-weeds. As the WRA 
model is not a model in the statistical sense, variability 
around the predicted outcomes cannot be investigated 
by standard parametric means. The issue is further 
complicated by the need to incorporate the effect of the 
prior probability of weediness. However, bootstrapping 
(repeatedly resampling with replacement) provides a 
robust method of estimating this variability whilst ac-
counting for the prior probability. We bootstrapped this 
data set 1000 times, with the probability of selection 
for weeds and non-weeds drawn from a Beta (1.62, 
31.4) distribution. For each bootstrap sample, a logis-
tic regression model was fi tted, relating the predicted 
(posterior) probability of weediness to WRA score. We 
calculated the average of the model predictions, and 
associated lower and upper 95% uncertainty intervals 
for each prior probability of weediness. 

RESULTS
Bootstrapped posterior probabilities of weediness as 
a function of WRA score are shown in Figure 1. The 
predicted probability was similar for both the logistic 
regression and raw bootstrap up until a WRA score of 
about 6, after which the raw bootstrap was no longer a 
smooth function. Regardless of the model examined, 
as a general trend, the probability of weediness started 
to increase sharply from a WRA score of about zero 
and upwards. The estimates of uncertainty around 
the predicted probabilities for the two models dif-
fered depending on WRA score. Uncertainty in the 
raw bootstrap was proportionally greater for WRA 
scores less than 7, with the reverse occurring for 
scores greater than 7. In fact, for the raw bootstrap, 
no variability was estimated around the predicted 
probability of weediness for WRA scores greater 
than 7 (other than 12 and 13), as weeds alone were 
assigned to these WRA scores (Figure 1b). In contrast, 
the logistic regression recorded substantial variability 
around the predicted probability of weediness for high 
WRA scores (Figure 1a). 

Within the ‘further evaluate’ class (WRA scores 
1–5), the probability of weediness as a function of 
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WRA score ranged from 2.0% for WRA score = 1 to 
6.4% for WRA score = 5 (Figure 2). The uncertainty 
intervals were proportionally large compared with the 
predicted probabilities (Figure 2). For example, the 
uncertainty interval for the probability of weediness 
for a WRA score of 5 ranged from zero to 26.3% 
(Figure 2).

DISCUSSION
Previous work has highlighted the effect of a low base-
rate probability of weediness on the performance of 
screening tests for identifying weedy plant biota 
(Smith et al. 1999). We have extended this analysis 
by incorporating uncertainty in this base-rate, in con-
junction with uncertainty arising from the screening 
model itself. As training datasets used to fi t screening 
models will most commonly have a higher proportion 

of weedy taxa than the environment in which they 
are required to predict in, there will always be a need 
to correct for the prior probability when evaluating 
the performance of invasive screening models. This 
statement holds true for all types of predictive models, 
such as the categorical and regression tree analyses 
(Reichard and Hamilton 1997), regardless of their 
quantitative rigour. Indeed, the training dataset used 
by Reichard and Hamilton (1997) contained ca. 67% 
weedy species, a similar proportion to the dataset ana-
lysed here. Obviously, the closer the true proportion 
of invaders in the suite of species being evaluated is to 
that contained in the training dataset, the less the bias 
in the model predictions of invasiveness. We suggest 
our bootstrapping approach has considerable merit, 
elucidating uncertainty arising from both the imperfect 
nature of the screening test, and the uncertainty in the 
prior probability of invasiveness. 

Unsurprisingly, given the low base-rate of weedi-
ness, we found the WRA system to have a low PPV, 
however the uncertainty in the base-rate resulted in 
considerable uncertainty in the PPV. This is likely true 
of other classifi cation systems—for example Reichard 
and Hamilton (1997), whose ‘do not admit’ classifi ca-
tion category may in reality not have the very high 
probability of weediness that they suggest. Having 
a low positive predictive value, although undesirable 
in the context of risk assessment, is not necessarily a 
problem within the context of risk management. For 
example, if a 1 in 20 chance of introducing a weedy 

Figure 2.   Bootstrapped posterior probabilities of a 
plant being a weed as a function of WRA scores in the 
‘further evaluate’ category for Pr(Weed) ~ Beta (1.62, 
31.4). Error bars represent 95% uncertainty intervals. 
Vertical dotted line represents cut-off WRA score for 
‘further evaluate’ and vertical dashed line represents 
cut-off WRA score for ‘reject’. 

Figure 1.   Bootstrapped posterior probabilities of a 
plant being a weed as a function of WRA score for (a) 
logistic regression bootstrap; and (b) raw proportions 
bootstrap, assuming a prior probability of weediness 
Pr(Weed) ~ Beta (1.62, 31.4). Error bars represent 
95% uncertainty intervals. Vertical dotted line repre-
sents cut-off WRA score for ‘further evaluate’ and 
vertical dashed line represents cut-off WRA score 
for ‘reject’. 
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species is considered too high a risk (i.e. the rejection 
threshold is set at Pr(Weedy) = 0.05), and a taxon is 
rejected on the grounds that its predicted probability 
of weediness exceeds this, there is no inconsistency. 
Rather, it is ignorance of the PPV of a screening test 
that could bias management decisions, particularly 
where there is a cost associated with implementing 
the screening test outcome – for example, a plant that 
may be of considerable use. Our results indicate a 
greater demarcation in the probability of weediness 
between taxa whose WRA scores lie either side of 
the current threshold score for rejection (WRA Score 
≥6), supporting the contention that taxa with WRA 
model scores above this threshold pose a consider-
able risk of becoming weeds. The estimated posterior 
probabilities of weediness for taxa classifi ed in the 
‘further evaluate’ category (2–6%), whilst low at fi rst 
glance, become non-trivial when one considers the 
number of taxa being proposed for importation (P. 
Pheloung unpublished data), the uncertainty in the 
estimates, and the potentially high cost of importing 
a weed (Pimentel et al. 2000). 

The bio-economic modelling of Smith et al. (1999) 
pooled all ultimately rejected taxa (‘further evaluate’ 
and ‘reject’) when calculating the proportion of false 
positives arising from the WRA model. The current 
analysis shows that within the group either rejected or 
in need of further evaluation, the probability of a false 
positive varies greatly (an order of magnitude) depend-
ing on the WRA score. Hence the approach of Smith 
et al. (1999) is overly simplistic, in that it pools good 
predictions with bad. Logically the analytical structure 
presented by Smith et al. (1999) could be modifi ed 
to account for this, and also incorporate uncertainty 
surrounding predictions of weediness. Clearly, better 
estimates of the prior base-rate probability of weedi-
ness will help to reduce uncertainty in predictions of 
weediness.
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