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Summary Remote detection is an influential tool for 

weed management, however accessing current 

technology can be costly, heterogeneous and 

unattainable for land managers. A new project aims to 

break down these barriers by investigating the 

limitations of this technology for remote weed detection 

in complex landscapes and create a Community of 

Practice for knowledge and information sharing that is 

accessible to all land managers. This paper presents an 

overview of the project methods and objectives, 

together with preliminary results and conclusions 

drawn from early analyses of recently acquired red, 

green, blue (RGB) and multispectral hawkweed 

imagery. Initial results emphasise the promise of RGB 

and multispectral sensors mounted on Remotely Piloted 

Aircraft Systems (RPAS), and supervised machine 

learning (ML) models for detecting hawkweed flowers 

with high accuracy in a rich set of landscapes.  
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INTRODUCTION 

Conventional surveillance methods (e.g. field surveys) 

for invasive plant species, or weeds are time-

consuming, dangerous and expensive, resulting in a 

lack of quantitative information about weed distribution 

in Australia (Campbell 1991). Such a lack of updated 

data hampers effective weed management (Coutts-

Smith and Downey 2006). Traditional remote sensing 

efforts to detect weeds using aerial photography and 

multispectral imagery have obtained mixed success, 

with low spatial (from 10 to 30 m/pixel) and spectral 

(~100 nm) resolutions (e.g., Spot, Landsat) (Lamb and 

Brown 2001, Thorp and Tian 2004). Even with higher 

spatial resolution, satellite multispectral sensors (e.g., 

IKONOS and WorldView) have low instrument signal 

to noise ratios (SNRs), limiting their use to only large-

scale weed infestations. 

Hyperspectral imaging is a cutting-edge remote 

sensing tool that can obtain many spectral 

measurements (from 50 to 400 bands) in one pass. 

The resulting images allow separation of weeds 

from desirable vegetation and provide semi-

quantitative abundances in plant and soil mixtures 

(Boardman 1998), showing considerable promise 

for identifying and mapping weed abundance 

(Miao et al. 2006, Dehaan et al. 2007). However, 

analysis using airborne and satellite systems can be 

costly and resolution is not always acceptable. 

Further, previous trials have demonstrated the 

deployment of active optical sensors in aerial 

platforms (Lamb et al. 2009), where detection of 

greenness by multispectral sensors typically 

worked well in crops when weeds are easily 

differentiated. In landscapes where weeds are 

mixed with other vegetation in heterogeneous 

situations, multispectral systems have shown less 

detection reliability.  

               Remotely Piloted Aircraft Systems 

(RPAS) and sensor technologies are now 

commercially available, achieving spatial 

resolutions from 2 to 50 cm/pixel, and with an 

increased flexibility to collect quantitative data at 

lower costs than traditional methods.  In addition, 

machine learning (ML) may offer the ability to 

model relationships between low-resolution 

satellite imagery and corresponding higher-

resolution images. This will allow enhancement of 

low-resolution satellite imagery, improving ability 

to detect weeds using this lower cost imagery.  

Research in this space has traditionally 

been widespread and segregated across Australia, 

with no existing mechanism to bring findings and 

resources together to improve uptake. This paper 

describes a new research project that aims to 
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address this gap by investigating the limitations and 

opportunities of existing remote sensing technologies 

now available for detecting weeds in heterogeneous 

landscapes. The paper also presents preliminary results 

of recent hawkweed imagery analysis in the sections 

below.  

MATERIALS AND METHODS 

Project description  The project, entitled 

“The weed managers guide to Remote Detection: 

Understanding the opportunities and limitations of 

multi-resolution and multi-modal technologies for 

remote detection of weeds in heterogeneous 

landscapes”  aims to investigate opportunities for cost-

effective use of high-resolution red, green, blue (RGB), 

or colour, multispectral and hyperspectral technologies 

across various airborne platforms (drone, aircraft, 

satellite), paired with multi-modal ML analyses to 

detect weeds in heterogeneous landscapes. Three 

nationally significant ‘model’ weeds: 1) (hawkweed, 

(Pilosella aurantiaca); 2) African lovegrass 

(Eragrostis curvula); and 3) bitou bush 

(Chrysanthemoides monilifera subsp rotundata) will be 

used to test each technology, with the objective of 

determining practicable methods for land managers to 

use remote sensing for weed detection, aiding different 

management objectives (i.e. eradication, containment, 

asset protection).  The project aims to grow extensive 

national partner networks, and to develop a national 

community of practice and portal to share learnings and 

advice on remote detection of weeds.  
RPAS-mounted RGB, multispectral and 

hyperspectral imagery will be collected for each weed 

species. Field sites have been established in complex 

ecological landscapes where the weeds are present in 

varying densities. Sites will be sampled over 18 months 

in accordance with physiological or phenological 

changes that may allow improved detection of target 

species. 
Analysis with multispectral and 

hyperspectral imagery will comprise the discrimination 

of key spectral bands and vegetation indices per weed 

species against other vegetation, as well as developing 

a pipeline to autonomously detect and map such weeds 

for a range of landscape ecosystems applying digital 

image processing, and supervised ML techniques such 

as gradient boosting and convolutional neural networks 

(CNNs). The development and outcomes of these 

pipelines will be validated with ground-based, or on-

site data from experts. The first data capture for this 

project was at orange hawkweed sites in December 

2021. 

.       

Site description   Hawkweed drone imagery was 

obtained from the Port Phillip hawkweed study site 

during December 2021 in Kosciuszko National 

Park (148.5875990°E 35.6923769°S), NSW, 

Australia. Much of the infestation at this site is 

enclosed within an approximate 20 m x 20 m area, 

which encompassed the flight region for data 

capture.                 
Ground truthing To facilitate the validation of 

all species captured within imagery, white plastic 

reference quadrats (1 m x 1 m) were placed across 

the site in areas representing variable botanical 

composition and hawkweed density. Ground      
images (Nikon D600 DSLR camera) of each 

quadrat were captured as reference images and 

quadrat features were recorded, including GPS 

location, plant species composition, plant height, 

species phenological stage and percentage ground 

disturbance. Cloud cover, wind speed, humidity, 

temperature and altitude were also recorded. 

 

Imagery acquisition Imagery was captured on the 

16th and 17th of December 2021 using DJI M300 

and M600 drones. A number of different camera 

systems were mounted to these drones including 

high-resolution  RGB cameras (Phase One-

100MP, DJI P1-45MP and Fuji GFX 100s-

100MP), multispectral (Micasense Altum) and 

hyperspectral (Specim AFX VNIR covering 400-

1000nm of the electromagnetic spectrum) 

cameras. Each payload configuration was flown at 

different heights (20 m to 120 m) to facilitate 

various ground sampling distance (GSD) 
resolutions (0.22 to 5 cm/pixel). Ground 

calibration panels were placed in the field to help 

with spectral calibration for the multispectral and 

hyperspectral data. Various ML models were 

applied to the captured images, establishing 

separate processing pipelines for high-resolution 

RGB, and multi/hyperspectral data. 

 
RGB imagery analysis 
1.Training and optimisation      To provide 

reasonable accuracy, 128      sample images from 

the RGB dataset were selected for model training, 

beginning with those of highest resolution (0.22 

cm/ pixel).                Bounding-box annotations 

were generated for each hawkweed flower 

appearing per      sampled image.      Several 

parameters such as the initial learning rate, final 

OneCycle learning rate, momentum, weight decay, 

obj loss gain, focal loss gamma, batch size, epoch, 

and confidence           were optimised      to      
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obtain the maximum accuracy of the selected deep 

models. 

   

2.Testing and Prediction Model performance was 

evaluated using several metrics, including precision, 

recall, and mean average precision (mAP) for an 

intersection over union (IOU) of 0.5 (50%). Precision 

measures the number of correctly predicted boxes, 

while recall measures the number of true boxes 

correctly predicted. 

 Flower detections of hawkweed within 

images were validated by weed experts. Detected 

hawkweeds within the ten ground-truthed reference 

quadrats were counted and visually cross-checked with 

ground images. Accuracies of all quadrats were 

subsequently averaged, producing the overall accuracy 

of the hawkweed detector model. An illustration of 

detected flowers is shown in Fig. 1. 
  

 

Fig. 1.Visual outlook of a tested high-resolution RGB 

image with hawkweed (quadrat dimensions 1m x 1m). 

Spatial resolution 11648 x 8736 pixels, and GSD 0.22 

cm/pixel. 

Multispectral imagery analysis Spectral 

signatures of hawkweed flowers and rosettes were 

identified, and a ML-based supervised model was tuned 

to map the weed using a data fusion approach between 

high-resolution RGB and multispectral orthomosaic 

rasters. 

 

1.    Orthomosaics and raster alignment  

Initial image processing consisted of generating an 

orthomosaic for the site, georeferencing the resulting 

raster using ground control points (GCPs) and 

overlaying the multispectral orthomosaic to achieve 

pixel-level alignment between both rasters. 

 

2.   Data labelling Pixel-wise image labelling was 

performed over the reference quadrats containing 

hawkweed presence. Given that the spatial 

resolution of the multispectral raster is 

considerably lower than the high-resolution RGB 

imagery, the labelling task was supervised by on-

ground weed experts. Challenges in labelling the 

data were addressed by applying a data-fusion 

approach. To simplify the spectral analysis, a total 

of four classes were compiled for hawkweed 

assessments, namely hawkweed rosettes, flowers, 

other vegetation, and non-vegetation. 

RESULTS 

The hawkweed detector model achieved an overall 

accuracy of 98.67% in the detection of hawkweed 

flowers within RGB imagery (0.22cm/pixel 

resolution) acquired at the Port Phillip site. 

Similarly, preliminary results on labelled data with 

the multispectral ML model reported a pixel-wise 

classification accuracy of 98.67% in the detection 

of hawkweed rosettes, and an overall accuracy of 

98% percent for all hawkweed classes labelled. An 

example of the mapped classes extrapolated to the 

entire multispectral imagery is shown in Fig. 2. 

 

 
(a) 

 
(b) 

Fig. 2. Image preview of predicted areas of 

hawkweed rosettes using multispectral imagery. 

(a) Highlighted areas of hawkweed rosettes in red, 

other vegetation in green, and non-vegetation in 

white. (b) Highlighted areas with the presence of 
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hawkweed rosettes in red. Quadrat dimensions 1m x 

1m. 
 

 High precision, recall and mAP values for hawkweed 

detection from RGB imagery were of 93%, 97% and 

97.3% respectively. Similarly, high precision and recall 

values were also achieved from multispectral imagery, 

at 97% and 99% respectively. 
 

DISCUSSION 

 Study results support the value of RPAS-mounted 

RGB and multispectral sensors for detecting hawkweed 

plants at flowering stages within an alpine 

heterogeneous landscape. Findings are consistent with 

other studies investigating RGB and multispectral 

sensors for hawkweed detection (Hamilton et al., 2018; 

Ajamain et al., 2021). The accuracy metrics on the ML 

model are preliminary and indicate that further 

validation on prediction of hawkweed using 

multispectral imagery with a wider range of vegetation 

is required. Results also highlight the significance of 

image resolution in relation to image clarity and 

detection accuracy when applying deep learning 

models to remotely sensed data. Since high resolution 

imagery acquisition can be costly, there remains a need 

to identify models capable of improving clarity and 

detecting species within lower resolution imagery. 

Despite the potential for detection at 

flowering stages, optimal control of weeds largely 

relies on detection during the vegetative stage, a goal 

historically less successful using RGB and 

multispectral technology (Hamilton et al., 2018; 

Ajamain et al., 2021).  Such challenges point to the 

potential of RPAS-borne hyperspectral sensors as 

demonstrated by the capacity for spectroradiometers to 

distinguish hyperspectral profiles of hawkweed leaves 

to an accuracy of 80% (Ajamain et al., 2021). 

Future project work will continue to 

investigate remote sensing technologies and their 

application to each model weed system, including: 1) 

the development of  detection models for low-

resolution images; 2) the development of image pre-

processing pipelines and models to improve image 

quality, and 3) the development of an image super-

resolution method to upscale low resolution imagery 

for improved weed detection. Project methodologies, 

imagery and results will be collated into a set of 

guidelines, an online portal and community of practice 

for the sharing of resources associated with the Remote 

Detection of Weeds.  
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